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ALGORITHMS FOR ESTIMATING OPTIMUM DIMENSIONALITV OF AN APPROXIMATE 

SOLUTION OF THE CONVERSE THERMAL CONDUCTIVITY PROBLEM 

Yu. E. Voskoboinikov ~ UDC 536.24 

Algorithms are presented for calculating the optimum dimensionality of an a~prox- 
imate solution, using various a priori data on the uncertainty to which the right 
side of the operator equation is specified, 

Formulation of the Problem. Many converse thermal conductivity problems reduce to solu- 
tion of a type I operator equation [i] 

K~ : [, (I) 

where ~(x) , f(y) are functions of the spaces ~, F; K is a completely continuous operator the 
null space of which is empty. The right side of f(y) is specified by measurements at a dis- 
crete set {yi } of values T~----f(Yi) ~-~ , i = i, 2, ..., n, where [i is the random uncertainty 
(measurement noise) at the point Yi' It is necessary that we construct a solution of inte- 
gral equation (i) from the initial data, {N, fl, f~ ..... [~} . As is well known, such a problem 
is incorrectly formulated [2], and various stable methods are used for its solution. 

In a number of methods, for the approximate solution of Eq. (I) the element 9N(x) of a 
finite dimensional space ~N of dimensionality N is used [3]. The base functions of such a 
space may be either eigenfunctions of the operator K, or a set of some functions with good 
approximation properties. With such a construction of the approximate solution, the dimen- 
sionality N plays the role of a unique regularization parameter and determines the accuracy 
of the solution constructed. Choice of "suitable" dimensionality depends on both the level 
of uncertainty in the measurements, and the differential properties of the unknown solution. 
With reduced dimensionality the solution r will not contain the "fine structure" of the 
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function ~(x) , while with elevated dimensionality oscillations appear in ~N(x) , caused by 
"swinging" in the measurement noise of the right side. Therefore, the problem develops of 
estimating the optimum (in accordance with some chosen criterion) dimensionality of the 
finite-dimensional space, the element of which defines the approximate solution of Eq. (I). 

Belowwe will present seven algorithms which permit estimating the optimum dimensional- 
ity Nop t. For the optimization criterion, we will use the mean-squareuncertainty of the 
right side approximation, defined by the function 

tz 

i =  I 

where M[-] is the mathematical expectancy operator: fN(Y) is the right side of Eq. (I) cor- 
responding to the solution ~p~v#x) 

I t  is obvious that the spaces ~N must be ordered on some scale. We will  introduce the 
discrepancy function 

p (7, f~) = ~ ~ (L - f~ (w)) ~, (2) 
i =  I 

where w i > 0 are weight factors. We denote by m N the lower boundary of this function, i.e., 
mN---- inf p([, K~) �9 We will say that the spaces @N are ordered if the following chain of 

CPCON 

inequalities is satisfied: 

(3) 

Before presenting the algorithm for evaluation of Nop t, we will consider the construction of 
the solution ~N(x) for a specified dimens&onality N. 

Construction of a Solution in the Space @N' With on loss of generality, we choose as 
the element ~N(x) the linear combination 

N 

%v (x) = ~ ajB~ (x), 
/ = I  

where Bj (x) are base functions of the space @N" We find the vector of the coefficients a = 
=lab a2 ..... am I from the condition of a minimum in the discrepancy function (2). We note that 
minimization of Eq, (2) permits calculation of estimates for the vector a, which are robust 
in the class of measurement noise distributions with finite dispersion [4]. For other class- 
es of distributions it is necessary to specify other discrepancy functions. 

It can be shown that the vector a* which minimizes Eq. (2) can be defined from the sys- 
tem of normal equations 

B~WBa = B~Wf, (4 )  

where f = Jim, f2 ..... [~[T is the vector of the right side measured values; T is the transporta- 
tion symbol; B is a matrix of dimensions n • N with elements {B}~j= ~Fj(y~)" . The function 
Pj(y) is an image of the function B~ (x), i.e., ~j = KBj. The diagonal matrix W is defined 
by the expression W=diag{m~, w~, ... ,wn}." Since the matrix of system (4) is positively de- 
fined, then for any vector ~ there exists a unique coefficient vector a*, which uniquely de- 
fines the approximate solution of Eq. (I) in the space @N" 

Algorithms for Estimating Optimum Dimensionality. Ere will note that direct minimiza- 
tion of the function A2(N) requires knowledge of the exact right side (or exact solution) of 
Eq. (i). Such information is as a rule unavailable. We do have the discrepancy vector e(N), 
the projections of which are defined by expression el(N) = fi -- fN(Vi), i = i, ..., n. In a 
number of cases we also have a pr~or~ information on the correlation matrix V~ of the random 
measurement noise vector ~=I~I, ~= ..... ~[r . Therefore we will present below seven algorithms 
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for estimating the optimum dimensionality which re~ on~ on avail~le information. It will 
be assumed that the measurement noise has a zero mean and is not correlated at adjacent mea- 

2 }, where is the noise dispersion at ooint Yi' surement points, i.e., V~=diag{o~,  o 5 ..... o n , ~i 2 
Due to the limited size of the stu~ only final results will be presented with appr~riate 
citations to ~e literature. 

Algorithm V. This is a statistical generalization of the discrepancy principle, widely 
used to select the regularization parameter [5]. We assume that the dispersions o~, ~, ..., 

2 
o n are given and introduce the quadratic form 

n 

V (N) = e~ (N) VFre (N) = ~  e~ (~)/~. . 

for Nop t we take the smallest value of N (denoted by N V) for which 

V (N) 6 0 . _ ~  (6) ----- [~n--N (~/2), ~n--N (1 -- 6/2)1. 

The bounda ry  p o i n t s  ~n--N(~/2), ~. ~--N ( 1 - -  6/2) o f  t h e  i n t e r v a l  O . - N ( ~ )  a r e  a q u a n t i l e  o f  a X 2- 
d i s t r i b u t i o n  with n --N degrees of freedom for levels 8/2, 1 -- B[2, respectively. We recom- 
mend that 8 be taken as 0.05. 

Algorithm W. This is based on the criterion of optimal approximation of experimental 
infoinnation of [6]. We assume that the dispersions oi =, i = i, 2, ..., n, are specified and 
introduce the bilinear expression: 

R 

i = t  

For Nop t we take the smallest value of N (denoted by N W) for which -W(N)GOn-lv(~). 
AlgorSthm C. We assume that the measurements of the right side are equally accurate, 

i.e., ~----~ ~-"'----~n2----~" and use the statistics of [7]: 

n 

c (N)  = 2 N  - -  n ,  

i = t '  

For Nop t we take the largest value of N (denoted by N C) satisfying the condition C(N)<~N. 
We will note that the above algorithms require specification of the measurement noise 

dispersion. When the dispersions are specified inaccurately the dimensionality values ob- 
tained may differ significantly from values calculated with accurately specified dispersions. 
This is a definite shortcoming of algorithms V, W, and C. Therefore, it is desirable to con- 
sider algorithms which do not require specification of the noise dispersion. 

Algorithm F. We assume that the measurements of the right side are equally accurate 
and define the statistics [8]: 

i= I i= I i= I 

For the optimum dimensionality we take the smallest value of N (denoted by N F) satisfying the 
inequalities:F(N)~F~(l, n--N); F(N+I)<~F~(I, n--N--l) , where F8(I, n -- N) is a quantile 
of level 8 (8 = 0.9-0.95) of a Fisher distribution f (I, n -- N) with degrees of freedom i, 

n -- No 

Algorithm A. 
namic systems [9]. 

This is based on an information criterion used for identification of dy- 
We introduce the function 

"" i= ! 

For Nop t we choose the value of N A which minimizes this function. 
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Algorithm U. This technique realizes the cross-validation method of [6, I0]. For the 
optimum dimensionality we take the value of N U whichminimizes the function 

U (N) -- 1 ~ e~ (N)/[1 -- N/nlt 
n 

i = f  

Algorithm R. This is based on ordered minimization of empirical risk [4]. 
choose the value of N R which minimizes the function 

For Nop t we 

R(N) = 1 "  n ~ e~(N)/ [1--(NOn n/N-{-1)--ln~ln )I/2] , 

where 

= Iz, z/>0; 
[z]~ too, z < 0, ~ = 0,02 -- 0,05. 

We will note a characteristic feature of these last three algorithms. The values of the 

minimizing functions are determined by two quantities. The first (of the form ~eO(N)/n ) 
: ~=I 

decreases with increase in N, while the second (the term 2N or the dividend in U(N), R(N)), 
which reflects the "complexity" of the solution constructed, increases. Determining a com- 
promise between the values of these two quantities is the basis of the last three algorithms. 

Evaluation of Numerical Experiment Results. To study the properties of the optimum di- 
mensionality estimates obtained by the algorithms presented above, a numerical experiment was 
performed (described in [ii]) to construct a solution of a type I Fredholm integral equation. 
Cubic B-splines [II] were used as base functions. Statistical modeling for various noise 
levels was used to find Nop t and error values A2(N) for various estimates of Nopt. The vol- 
ume of samples taken was 50. 

Analysis of these results revealed that for known dis9ersions of measurement noise al- 
gorithm W evaluates Nop t with satisfactory accuracy. Algorithms V and C, as a rule, give 
lowered dimensionality values, corresponding to an "oversmoothed" solution. If the noise 
dispersion is not known, then for values of Nopt/n < 0.3 it is desirable to use algorithm U 
for calculating Nopt, while for values Nopt/n~0.3 algorithm R is suitable. It should be 
noted that in case of correlated measurement noise (the correlation coefficient at adjacent 
points being set equal to 0.2) algorithm U leads to elevated dimensionality values and insuf- 
ficient smoothing of measurement noise. 

NOTATION 

~jx) , unknown solution of the operator equation; f(y), exact right-hand side of equa- 
tion; fi, measured values of right-hand side; N, dimensionality of finite-dimensional space 
�9 N; ~x), approximate solution of integral equation of dimensionality N; fN(Y), right-hand 
side of equation corresponding to ~N~) ; B~(x), base functions; $i, measurement noise; V~, 
measurement noise correlation function; ~i2~ measurement noise dispersion; ei(N) , discrepancy 
of i-th measurement;e(N),~-;(~/2)iscrepancy vector; e(n), quantile of x2-distribution with 
n --N degrees of freedom of level 8/2; F8(I, n --N), quantile of Fisher distribution of level 
8 with degrees of freedom i, n -- N; V(N), W(N), C(N), F(N), A(N), U(N), R(N)~, functionalsused to find 
optimum dimensionality estimates; Nopt, optimum dimensionality. 

I* 

2. 

3. 
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NUMERICAL SOLUTION OF THE INVERSE PROBLEM OF HEAT CONDUCTION 

BY USING REGULARIZED DIFFERENCE SCHEMES 

P. N. Vabishchevich UDC 519,63 

The stability of difference schemes is investigated for the approximate solution 
of a multidimensional incorrect heat-conduction problem with inverse time. 

Among the inverse problems of heat transfer [I], the problem with inverse time for the 
heat-conduction equation that belongs to the A. N. Tikhonov conditionally correct class at- 
tracts a great deal of attention. The general approach to the solution of unstable problems 
is formulated in [2] on the basis of the method of regularization. The method of quasiinver- 
sion [3] which consists in perturbing the initial equation has received wide propagation for 
differential equations. Of the later modifications of this method we note that described in 
[4] where a "pseudoparabolic" perturbation of the original equation as well as a "hyperbolic" 
modification are examined [i]. The stability of appropriate difference schemes of the quasi- 
inversion method is investigated in [5, 6]. 

Regularization of difference schemes is achieved in this paper by selecting a negative 
weight in the usual scheme with weights [7]. Economical difference schemes analogous to the 
locally one-dimensional schemes [7] in solving the direct heat conduction problem, are pro- 
posed in the multidimensional case. General results of the A. A. Samarskii [8] theory of 
stability of difference schemes are used in investigating the stability�9 

FOP~KFLATION OF THE PROBLEM 

Let ~ denote a n-dimensionalparallelepiped: ~ = {xlx ~ (xl, x2,, x~), O<x~<lh, k 
I, 2, ..., n}. 

For xC~ let us determine the uniform elliptical operator L: 

h=l ~ OXh 

with sufficiently smooth coefficients cth(x~) ~ a o > O ,  k~ -1 ,  2, . . . ,  n 
satisfies the heat-conduction equation with inverse time 

Ou 
O--7 -+ tu=O,  x 6 f L  tES=(O, T), T>O, 

�9 The function u(x, t) 

(1) 
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